AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
吳開亮
副教授
副教授
wukl@sustech.edu.cn

吳開亮,男,籍貫安徽省安慶市,理學博士,南方科技大學數學系副教授、博士生導師。2011年獲華中科技大學數學學士學位;2016年獲北京大學計算數學博士學位;2016-2020年先后在美國猶他大學和美國俄亥俄州立大學從事博士后研究工作;2021年1月加入南方科技大學、任副教授。研究方向包括計算流體力學與數值相對論、機器學習與數據驅動建模、微分方程數值解、高維逼近與不確定性量化等。研究成果發表在SINUM,SISC,Numer. Math.,M3AS,J. Comput. Phys.,JSC,ApJS,Phys. Rev. D等期刊上。曾獲中國數學會計算數學分會 優秀青年論文獎一等獎(2015)和中國數學會 鐘家慶數學獎(2019)。


研究領域

微分方程數值解、計算流體力學與數值相對論、機器學習與數據科學、計算物理、高維逼近論與不確定性量化


榮譽及獲獎

◆ 2019:中國數學會 鐘家慶數學獎

◆ 2016:北京大學 優秀畢業生

◆ 2015:中國數學會計算數學分會 優秀青年論文獎一等獎

◆ 2014:北京大學 “挑戰杯”五四青年科學獎一等獎


代表性論文 (更新于2021年5月)

◆ K. Wu

Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics
SIAM Journal on Numerical Analysis,   56(4):2124--2147, 2018.


◆ K. Wu and C.-W. Shu

Provably positive high-order schemes for ideal magnetohydrodynamics: Analysis on general meshes

Numerische Mathematik,   142(4): 995--1047, 2019.


◆ K. Wu and D. Xiu

Data-driven deep learning of partial differential equations in modal space

Journal of Computational Physics,   408: 109307, 2020. 


◆ K. Wu and C.-W. Shu

Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations

Numerische Mathematik,   accepted for publication, 2021.


◆ K. Wu 

Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics

submitted for publication, arXiv:2102.03801, 2021.


◆ Z. Chen, V. Churchill, K. Wu, and D. Xiu

Deep neural network modeling of unknown partial differential equations in nodal space

Journal of Computational Physics,     submitted for publication, 2021.


◆ K. Wu and Y. Xing

Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: Positivity and well-balancedness

SIAM Journal on Scientific Computing,    43(1), A472--A510, 2021.


◆ K. Wu, T. Qin, and D. Xiu

Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data

SIAM Journal on Scientific Computing,   42(6): A3704--A3729, 2020. 


◆ K. Wu and C.-W. Shu

Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations

SIAM Journal on Scientific Computing,   42(4): A2230--A2261, 2020. 


◆ Z. Chen, K. Wu, and D. Xiu

Methods to recover unknown processes in partial differential equations using data

Journal of Scientific Computing,   85:23, 2020. 


◆ K. Wu, D. Xiu, and X. Zhong

A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs 

Communications in Computational Physics,   accepted for publication, 2020.


◆ J. Hou, T. Qin, K. Wu and D. Xiu

A non-intrusive correction algorithm for classification problems with corrupted data

Commun. Appl. Math. Comput.,  in press, 2020.


◆ T. Qin, K. Wu, and D. Xiu

Data driven governing equations approximation using deep neural networks

Journal of Computational Physics,   395: 620--635, 2019.


◆ K. Wu and D. Xiu

Numerical aspects for approximating governing equations using data

Journal of Computational Physics,   384: 200--221, 2019.


◆ K. Wu and C.-W. Shu

A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics

SIAM Journal on Scientific Computing,   40(5):B1302--B1329, 2018.


◆ Y. Shin, K. Wu, and D. Xiu

Sequential function approximation with noisy data

Journal of Computational Physics,   371:363--381, 2018.


◆ K. Wu and D. Xiu

Sequential function approximation on arbitrarily distributed point sets

Journal of Computational Physics,   354:370--386, 2018.


◆ K. Wu and H. Tang

On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state

Z. Angew. Math. Phys.,   69:84(24pages), 2018.


◆ K. Wu, Y. Shin, and D. Xiu

A randomized tensor quadrature method for high dimensional polynomial approximation

SIAM Journal on Scientific Computing,   39(5):A1811--A1833, 2017. 


◆ K. Wu

Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics

Physical Review D,   95, 103001, 2017. 


◆ K. Wu, H. Tang, and D. Xiu

A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty

Journal of Computational Physics,   345:224--244, 2017. 


◆ K. Wu and H. Tang

Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations

Math. Models Methods Appl. Sci. (M3AS),   27(10):1871--1928, 2017. 


◆ Y. Kuang, K. Wu, and H. Tang

Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid

Numer. Math. Theor. Meth. Appl.,   10(2):373--419, 2017. 


◆ K. Wu and H. Tang

Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state

Astrophys. J. Suppl. Ser. (ApJS),   228(1):3(23pages), 2017. (2015 Impact Factor of ApJS: 11.257)


◆ K. Wu and H. Tang

A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics

SIAM Journal on Scientific Computing,   38(3):B458--B489, 2016. 


◆ K. Wu and H. Tang

A Newton multigrid method for steady-state shallow water equations with topography and dry areas

Applied Mathematics and Mechanics,   37(11):1441--1466, 2016. 


◆ K. Wu and H. Tang

High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics

Journal of Computational Physics,   298:539--564, 2015.


◆ K. Wu and H. Tang

Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics

Journal of Computational Physics,   256:277--307, 2014. 


◆ K. Wu, Z. Yang, and H. Tang

A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics

Journal of Computational Physics,   264:177--208, 2014. 


學術服務

◆ 美國《數學評論》評論員

◆ 下列期刊審稿人

Communications in Computational Physics

Computer Methods in Applied Mechanics and Engineering

East Asian Journal on Applied Mathematics

Engineering Optimization

Journal of Computational and Applied Mathematics

Journal of Computational Physics

Journal of Scientific Computing

Journal of Applied Mathematics and Computing

Mathematical Models and Methods in Applied Sciences (M3AS)

Mathematica Numerica Sinica

SIAM Journal on Scientific Computing

SIAM/ASA Journal on Uncertainty Quantification



百家乐视频麻将下载| 十三张娱乐城开户| 八大胜娱乐| 视频百家乐官网是真是假| 百家乐电脑游戏高手| 财神真人娱乐城| KK百家乐官网的玩法技巧和规则 | 名门国际娱乐| 黄金百家乐官网的玩法技巧和规则| 利来百家乐的玩法技巧和规则| 旬邑县| 百家乐娱乐城送分| 百家乐官网怎么会赢| 百家乐技巧和规律| 大发888在线娱乐二十一点| 百家乐官网看大路| 百家乐| 百家乐缆的打法| 老人头百家乐的玩法技巧和规则| 网上百家乐官网追杀| 阴宅24层手机罗盘| 至棒娱乐备用| 百家乐策略网络游戏信誉怎么样 | 韩城市| 大发888娱乐城 bg| 网上百家乐信誉度| 循化| 大发888娱乐城888 bg| 兰桂坊百家乐官网的玩法技巧和规则| 永利百家乐官网游戏| 大发888无数| 试玩百家乐1000| 百家乐官网前四手下注之观点| 威尼斯人娱乐城地图| 蛟河市| 博彩百家乐字谜总汇二丹东| 百家乐官网电投| 顶级赌场怎么样| 百家乐在线手机玩| 广发百家乐官网的玩法技巧和规则| 百家乐官网封号|