AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
WU Kailiang
Associate Professor
Associate Professor
wukl@sustech.edu.cn

Employment

◆ 2021.01-present: Associate Professor, Department of Mathematics, Southern University of Science and Technology

◆ 2016.08-2020.12: Postdoctoral Scholar, Department of Mathematics, The Ohio State University

◆ 2016.04-2016.08: Postdoctoral Fellow, Scientific Computing and Imaging Institute, University of Utah

Education

◆ 2011-2016:  Ph.D.  School of Mathematical Sciences, Peking University

◆ 2007-2011:  B.Sc.  School of Mathematics and Statistics, Huazhong University of Science and Technology


Research Interests

◆ Machine Learning and Data-driven Modeling

◆ Numerical Solutions of Partial Differential Equations

◆ Computational Fluid Dynamics and Astrophysics

◆ High-order Accurate Numerical Methods

◆ Hyperbolic Conservation Laws

◆ Approximation Theory and Uncertainty Quantification


Awards

◆ Zhong Jiaqing Mathematics Award, the Chinese Mathematical Society (2019) One of the three major mathematics awards of the Chinese Mathematical Society (4 per 2 years)

◆ Outstanding Ph.D. Graduates Award, PKU (2016)

◆ Outstanding Youth Paper Award (First Prize), the China Society for Computational Mathematics  (2015)

◆ First Prize of "Challenge Cup" May-4th Youth Science Award, PKU (2014)

◆ President Scholarship, PKU (2014–2016) (The biggest scholarship of PKU)


Selected Publications (latest update: May 2021)

◆ K. Wu

Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics
SIAM Journal on Numerical Analysis,    56(4):2124--2147, 2018.


◆ K. Wu and C.-W. Shu

Provably positive high-order schemes for ideal magnetohydrodynamics: Analysis on general meshes

Numerische Mathematik,    142(4): 995--1047, 2019.


◆ K. Wu and D. Xiu

Data-driven deep learning of partial differential equations in modal space

Journal of Computational Physics,    408: 109307, 2020. 


◆ K. Wu and C.-W. Shu

Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations

Numerische Mathematik,    accepted for publication, 2021.



◆ K. Wu 

Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics

submitted for publication, arXiv:2102.03801, 2021.


◆ Z. Chen, V. Churchill, K. Wu, and D. Xiu
Deep neural network modeling of unknown partial differential equations in nodal space
Journal of Computational Physics,    submitted for publication, 2021.


◆ K. Wu and Y. Xing

Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: Positivity and well-balancedness

SIAM Journal on Scientific Computing,    accepted for publication, 2020.


◆ K. Wu, T. Qin, and D. Xiu

Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data

SIAM Journal on Scientific Computing,    42(6): A3704--A3729, 2020. 


◆ K. Wu and C.-W. Shu

Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations

SIAM Journal on Scientific Computing,    42(4): A2230--A2261, 2020. 


◆ Z. Chen, K. Wu, and D. Xiu

Methods to recover unknown processes in partial differential equations using data

Journal of Scientific Computing,    85:23, 2020. 


◆ K. Wu, D. Xiu, and X. Zhong

A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs 

Communications in Computational Physics,    accepted for publication, 2020.


◆ J. Hou, T. Qin, K. Wu and D. Xiu

A non-intrusive correction algorithm for classification problems with corrupted data

Commun. Appl. Math. Comput.,   in press, 2020.


◆ T. Qin, K. Wu, and D. Xiu

Data driven governing equations approximation using deep neural networks

Journal of Computational Physics,    395: 620--635, 2019.


◆ K. Wu and D. Xiu

Numerical aspects for approximating governing equations using data

Journal of Computational Physics,    384: 200--221, 2019.


◆ K. Wu and C.-W. Shu

A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics

SIAM Journal on Scientific Computing,    40(5):B1302--B1329, 2018.


◆ Y. Shin, K. Wu, and D. Xiu

Sequential function approximation with noisy data

Journal of Computational Physics,    371:363--381, 2018.


◆ K. Wu and D. Xiu

Sequential function approximation on arbitrarily distributed point sets

Journal of Computational Physics,    354:370--386, 2018.


◆ K. Wu and H. Tang

On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state

Z. Angew. Math. Phys.,    69:84(24pages), 2018.


◆ K. Wu, Y. Shin, and D. Xiu

A randomized tensor quadrature method for high dimensional polynomial approximation

SIAM Journal on Scientific Computing,   39(5):A1811--A1833, 2017. 


◆ K. Wu

Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics

Physical Review D,   95, 103001, 2017. 


◆ K. Wu, H. Tang, and D. Xiu

A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty

Journal of Computational Physics,   345:224--244, 2017. 


◆ K. Wu and H. Tang

Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations

Math. Models Methods Appl. Sci. (M3AS),   27(10):1871--1928, 2017. 


◆ Y. Kuang, K. Wu, and H. Tang

Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid

Numer. Math. Theor. Meth. Appl.,   10(2):373--419, 2017. 


◆ K. Wu and H. Tang

Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state

Astrophys. J. Suppl. Ser. (ApJS),   228(1):3(23pages), 2017. (2015 Impact Factor of ApJS: 11.257)


◆ K. Wu and H. Tang

A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics

SIAM Journal on Scientific Computing,   38(3):B458--B489, 2016. 


◆ K. Wu and H. Tang

A Newton multigrid method for steady-state shallow water equations with topography and dry areas

Applied Mathematics and Mechanics,   37(11):1441--1466, 2016. 


◆ K. Wu and H. Tang

High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics

Journal of Computational Physics,   298:539--564, 2015.


◆ K. Wu and H. Tang

Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics

Journal of Computational Physics,   256:277--307, 2014. 


◆ K. Wu, Z. Yang, and H. Tang

A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics

Journal of Computational Physics,   264:177--208, 2014.


Professional Services

◆ Reviewer for AMS Mathematical Reviews

◆ Referee for scientific journals including

Communications in Computational Physics

Computer Methods in Applied Mechanics and Engineering

East Asian Journal on Applied Mathematics

Engineering Optimization

Journal of Computational and Applied Mathematics

Journal of Computational Physics

Journal of Scientific Computing

Journal of Applied Mathematics and Computing

Mathematical Models and Methods in Applied Sciences (M3AS)

Mathematica Numerica Sinica

SIAM Journal on Scientific Computing

SIAM/ASA Journal on Uncertainty Quantification



木棉百家乐官网的玩法技巧和规则| 香港百家乐官网马书| 大发888ber娱乐场下载| 澳门百家乐官网娱乐城信誉如何| 永利百家乐官网游戏| 百家乐官网德州扑克发牌盒| 威尼斯人娱乐老| 帝王百家乐官网的玩法技巧和规则 | 真人二八杠| 百家乐智能分析软| 桑植县| 明溪百家乐官网的玩法技巧和规则| 时时博百家乐的玩法技巧和规则 | 欧洲三大博彩公司| 百盛百家乐软件| 缅甸百家乐官网玩家吗| 菲律宾太阳城88| 優博百家乐官网客服| 六合彩官方网站| 百家乐游戏平台排名| 百家乐官网二十一点| 香港六合彩开奖号码| 百家乐有破解的吗| 百家乐官网怎样做弊| 德州扑克 技巧| 海港城百家乐的玩法技巧和规则| 免费百家乐官网缩水软件| 大发888娱乐新澳博| 广东百家乐扫描分析仪| 百家乐官网网上真钱娱乐场开户注册 | 百家乐官网最大的赌局| 网络赌博平台| 大家旺百家乐娱乐城| 百家乐官网博弈指数| 德州扑克算牌器| 百家乐翻天主题曲| 真人百家乐皇冠网| 宾利百家乐官网现金网| 百家乐官网是娱乐场| 三河市| 易胜博娱乐城|