AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
熊捷
講席教授
xiongj@sustech.edu.cn

教育經歷
1992年,北卡羅來納大學教堂山分校,統計系,獲哲學博士學位;
1986年,北京大學,統計系,獲統計碩士學位;
1983年,北京大學,數學系獲數學學士學位;

 

工作經歷
2017年12月至今,南方科技大學,數學系,講席教授;
2012年至2017年,澳門大學,數學系,教授;
2004年至2014年,田納西大學,數學系,教授;
1999年至2004年,田納西大學,數學系,副教授;
1993年至1999年,田納西大學,數學系,助理教授;
1992年至1993年,北卡羅來納大學夏洛特分校,訪問講師;
1986年至1988年,北京大學,指導員;

 

榮譽及獲獎
Humboldt Research Fellowship, 2003.
Canada Research Chair in Stochastic Processes and Filtering. 2002.
University of Tennessee-Oak Ridge National Lab Science Alliance research award. 1996-2000.
Graduate School Dissertation Fellowship. 1992.
George E. Nicholson, Jr. Fellowship, 1989.

 

Selected Publications
1.Jie Xiong (2013). Three Classes of Nonlinear Stochastic Partial Differential Equations. World Scientific.
2.J. Xiong (2008). An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics. 18. Oxford University Press.
3.T. Hida, R. Karandikar, H. Kunita, B. Rajput, S. Watanabe and J. Xiong (editors). Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur. pp. 500. Birkhauser, 2000.
4.G. Kallianpur and J. Xiong (1995). Stochastic Differential Equations on Infinite Dimensional Spaces, IMS Lecture notes-monograph series, Vol. 26.
5.R. Wang, J. Xiong and L. Xu (2017). Irreducibility of stochastic real Ginzburg-Landau equation driven by stable noises and applications. Bernoulli, 23, No. 2, 1179-1201.
6.Z. Dong, J. Xiong, J. L. Zhai and T. S. Zhang (2017), A Moderate Deviation Principle for 2-DStochastic Navier-Stokes Equations Driven by Multiplicative L′evy Noises. J. Funct. Anal., 272, no. 1, 227-254.
7.J. Xiong and X. Yang (2016) Superprocesses with interaction and immigration. Stochastic Processes Appl. 126, 3377-3401.
8.Y. Chen, H. Ge, J. Xiong and L. Xu (2016). The Large Deviation Principle and Fluctuation Theorem for the Entropy Product Rate of a Stochastic Process in Magnetic Fields. J. Math. Physics. 57, 073302
9.F. Wang, J. Xiong and L. Xu (2016). Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations. Journal Statistical Physics.163, no. 5, 1211-1234,
10.S. Lenhart, J. Xiong and J. Yong (2016). Optimal Controls for Stochastic Partial Differential Equations with an Application in Controlling Rabbit Population. SIAM Control. Optim. 54, no. 2, 495-535
11.J.T. Shi, G.C. Wang and J. Xiong (2016). Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications. Automatica J. IFAC 63, 60-73.
12.G. Wang, Z. Wu and J. Xiong (2015). A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Transactions on Automatic Control 60, No.11, 2904-2916.
13.P. Fatheddin and J. Xiong (2015). Large deviation principle for some measure-valued processes. Stoch. Proce. Appl. 125, no. 3, 970-993.
14.Zenghu Li, Huili Liu, Jie Xiong and Xiaowen Zhou (2013). The reversibility and an SPDE for the generalized Fleming-Viot processes with mutation. Stoch. Proce. Appl.123, 4129-4155.
15.J. Xiong (2013). Super-Brownian motion as the unique strong solution to a SPDE. Ann. Probab. 41, No. 2, 1030-1054.
16.G.C. Wang, Z. Wu and J. Xiong (2013). Maximum principles for optimal control of forward-backward stochastic systems under partial information. SIAM J. Control Optim. 51, No. 1, 491-524.
17.Z. Li, H. Wang, J. Xiong and X. Zhou (2012), Joint continuity of the solutions to a class of nonlinear SPDEs. Probab. Theory Relat. Fields 153, No. 3, 441-469.
18.J. Detemple, W. Tian and J. Xiong (2012). Optimal stopping with reward constraints. Financial Stochastics 16, 423-448.
19.L. Mytnik, J. Xiong and O. Zeitouni (2011). Snake representation of a superprocess in random environment. ALEA, Lat. Am. J. Probab. Math. Stat. 8, 335–377.
20.J. Huang, G. Wang and J. Xiong (2009). A Maximum Principle for Partial Information Backward Stochastic Control Problems with Applications. SIAM J. Control Optim.40, No. 4, 2106-2117.
21.K.J. Lee, C. Mueller and J. Xiong (2009). Some properties for superprocess over a stochastic flow. Ann. Inst. H. Poincar\’e Probab. Statist. 45, No. 2, 477-490.
22.J. Xiong and X.Y. Zhou (2007). Mean-Variance portfolio selection under partial information. SIAM J. Control Optim. 46, no. 1, 156–175.
23.Z. Li, H. Wang and J. Xiong. (2004). A degenerate stochastic partial differential equation for superprocesses with singular interaction. Probab. Th. Relat. Fields 130, 1-17.
24.J. Xiong (2004). A stochastic log-Laplace equation. Ann. Probab. 32, 2362-2388.
25.D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, and J. Xiong (2002). Mutually catalytic processes in the plane: Finite measure states. Ann. Probab. 30, no. 4, 1681–1762.
26.K. Fleischmann and J. Xiong (2001). A cyclically catalytic branching model, Annals of Probability, 2, 820-861.
27.T. Kurtz and J. Xiong (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Processes and their Applications 83, 103-126.
28.G. Kallianpur and J. Xiong, Large deviation principle for a class of stochastic partial differential equations, Annals of Probability, 24, 1996, 320-345.
29.G. Kallianpur and J. Xiong, Diffusion approximation of stochastic differential equations driven by Poisson random measures, Annals of Applied Probability, 5, 1995, 493-517.
30.J. Xiong and M. P. Qian (1990). Construction and properties of coupled diffusion processes, Acta Math. Appl. Sinica, 13, 391-400 (in Chinese).

赌场百家乐官网视频| 百家乐榄梯打法| 百家乐官网的视频百家乐官网| 博王娱乐| 百家乐最好的投注方法| 博彩e天上人间| 百家乐那个平台信誉高| 乌鲁木齐市| 线上百家乐是如何作弊| 哪个百家乐官网投注平台信誉好| 水果机技巧规律| 圣淘沙百家乐官网的玩法技巧和规则 | 洛阳市| 百家乐三国| 百家乐官网职业赌徒的解密| 大发888官网 df888ylcxz46 | 波音百家乐官网现金网| 怎样打百家乐的玩法技巧和规则| 百家乐官网赌现金| 云博备用网| 电脑赌百家乐可靠吗| 网络百家乐官网最安全| 大发888娱乐场下载注册| 风水24山读法| 线上百家乐官网信誉| 最新皇冠网| 二八杠游戏平台| 百家乐论坛香港马会| 伟易博百家乐官网的玩法技巧和规则 | 百家乐官网庄最高连开几把| 专业百家乐官网分析| 世界德州扑克大赛| 大家旺百家乐的玩法技巧和规则| 做生意的好风水| 百家乐官网预约| 大发888娱乐场怎样下载 | 布尔津县| 大发888官方6222.co| 大发888娱乐城888| 爱拼百家乐的玩法技巧和规则| 免费百家乐在线|