AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
宋軒
副教授、研究員
songx@sustech.edu.cn


研究方向:

人工智能,大數據分析,城市計算,智慧城市

教育背景

◆ 2005-2010,博士學位(信號與信息處理) ---北京大學, 北京中國

◆ 2001-2005,學士學位 (信息工程) ---吉林大學, 吉林省, 中國

工作經歷

◆ 2010---2012 博士后研究員, 東京大學,空間信息科學中心,日本

◆ 2012---2015特任助理教授, 東京大學,空間信息科學中心,日本

◆ 2015--201 特任副教授, 東京大學,空間信息科學中心,日本

◆ 2018---2019 主任研究員(終身職位), 日本國家產業技術綜合研究所,人工智能研究中心,日本

◆ 2019年1月---至今 副教授,南方科技大學

榮譽與獎項

◆ 日本卓越研究員,頒發機構:日本文部科學省,2017年。(日本國家最高級別青年人才計劃,當年共計72人入選,唯一的中國籍入選者)

◆ ACM普適計算年會(UbiComp)最佳論文提名獎,頒發機構:國際計算機學會(ACM),2015年。

◆ 北京大學信息學院學術十杰,頒發機構:北京大學,2010年。

代表文章

(Authors associated with * are/were doctoral or master student I have supervised)

 

(33) Z. Fan*, X. Song, T. Xia, R. Jiang, R. Shibasaki and R. Sakuramachi, “Online Deep Ensemble Learning for Predicting Citywide Human Mobility”, Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (UbiComp 2018), 2018.

(32) H. Zhang*, X. Song, T. Xia, M. Yuan, Z. Fan, R. Shibasaki, Y. Liang, “Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response”, Applied Energy, 2018.

(31) R. Jiang*, X. Song, Z. Fan, T. Xia, Q. Chen, Q. Chen, and R. Shibasaki, “Deep ROI-Based Modeling for Urban Human Mobility Prediction”, Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (UbiComp 2018), 2018.

(30) R.Jiang*, X. Song, Z. Fan, T. Xia, Q. Chen, S. Miyazawa, R. Shibasaki, “DeepUrbanMomentum: An Online Deep-Learning System for Short-Term Urban Mobility Prediction”, to appear in Proc. of Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018.

(29)X. Song, R. Shibasaki, N. Yuan, X. Xie, T. Li, R. Adachi, “DeepMob: Learning Deep Knowledge of Human Emergency Behavior and Mobility from Big and Heterogeneous Data”, ACM Transactions on Information Systems (ACM TOIS), 35(4): 41, 19 pages, 2017.

(28)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. Yuan, X. Xie, “Prediction and Simulation of Human Mobility Following Natural Disasters”, ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 8(2): 29, 2017.

(27) Z. Fan*, X. Song, R. Shibasaki, T. Li,R. Adachi,“CityCoupling: Bridging Intercity Human Mobility”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2016.

(26) X. Song, H. Kanasugi, R. Shibasaki, “DeepTransport: Prediction and Simulation of Human Mobility and Transportation Mode at a Citywide Level”, Proc. of 25th International Joint Conference on Artificial Intelligence (IJCAI), 2016.

(25) Z. Fan*, A. Arai, X. Song, A. Witayangkurn, H. Kanasugi, R. Shibasaki, ”A Collaborative Filtering Approach to Citywide Human Mobility Completion from Sparse Call Records”, Proc. of 25th International Joint Conference on Artificial Intelligence (IJCAI), 2016.

(24) Q. Chen*, X. Song, H. Yamada, R. Shibasaki, “Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference”, Proc. of Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), pp. 338-344, 2016.

(23)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. Yuan, X. Xie, “A Simulator of Human Emergency Mobility following Disasters: Knowledge Transfer from Big Disaster Data”, Proc. of Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), pp. 730-736, 2015.

(22) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki,”Object Discovery: Soft Attributed Graph Mining”, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 38(3): 532-545, 2016.

(21) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “From RGB-D Images to RGB Images: Single Labeling for Structural Model Mining”, ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 6(2): 16, 2015.

(20) Z. Fan*, X. Song, R. Shibasaki, R. Adachi, “CityMomentum: An Online Approach for Crowd Behavior Prediction at a Citywide Level”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp),pp. 559-569,2015.(Honorable Mention Award)

(19)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, “Prediction of Human Emergency Behavior and their Mobility following Large-scale Disaster”, Proc. of 20th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2014), pp. 5-14, 2014.

(18) Z. Fan*, X. Song, R. Shibasaki, “CitySpectrum: A Non-negative Tensor Factorization Approach”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), pp. 213-223, 2014.

(17) X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, “Intelligent System for Urban Emergency ManagementDuring Large‐scale Disaster”, Proc. of Twenty-Eighth AAAI Conference onArtificial Intelligence (AAAI),pp. 458-464, 2014.

(16) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “When 3D Reconstruction Meets Ubiquitous RGB-D Images”, Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 700-707, 2014.

(15) Q. Zhang*,X. Song, X. Shao, H. Zhao, R. Shibasaki, “Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns”, Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1394-1401, 2014.

(14) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Semi-supervised Learning of 3D Object Models and Point Labeling from a Large and Complex Environment”, Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 3082-3089, 2014.

(13) X. Song, Q. Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, R. Shibasaki, “Modeling and Probabilistic Reasoning of Population Evacuation During Large-scale Disaster”, Proc. of 19th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2013),pp. 1231-1239, 2013.

(12) X. Song, Q. Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, R. Shibasaki, "Intelligent System for Human Behavior Analysis and Reasoning Following Large-Scale Disasters," IEEE Intelligent Systems, vol. 28, no. 4, pp. 35-42, July-Aug. 2013.

(11) X. Song, X. Shao, Q. Zhang, R. Shibasaki, H. Zhao, J. Cui, H. Zha, "A Fully Online and Unsupervised System for Large and High Density Area Surveillance: Tracking, Semantic Scene Learning and Abnormality Detection",ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 4(2): 20, 2013.

(10) X. Song, H. Zhao, J. Cui, X. Shao, R. Shibasaki, H. Zha, "An Online System for Multiple Interacting Targets Tracking: Fusion of Laser and Vision, Tracking and Learning",ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 4(1): 18, 2013.

(9) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Learning Graph Matching: Oriented to Category Modeling from Cluttered Scenes”,Proc. of IEEE International Conference on Computer Vision (ICCV),pp. 1329-1336, 2013.

(8) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Unsupervised 3D Category Discovery and Point Labeling from a Large Urban Environment”, Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2685-2692, 2013.

(7) Q. Zhang*, X. Song,X. Shao, H. Zhao, R. Shibasaki, "Category Modeling from Just a Single Labeling: Use Depth Information to Guide the Learning of 2D Models",Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),pp. 193-200, 2013.

(6) X. Song, X. Shao, Q. Zhang, R. Shibasaki, H. Zhao, H. Zha, "Laser-based Intelligent Surveillance and Abnormality Detection in Extremely Crowded Scenarios", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2170-2176, 2012.

(5) X. Song, X. Shao, R. Shibasaki, H. Zhao, J. Cui, H. Zha, "A novel laser-based system: Fully online detection of abnormal activity via an unsupervised method", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.1317-1322, 2011.

(4) X. Song, X. Shao, H. Zhao, J. Cui, R. Shibasaki, H. Zha, "An Online Approach: Learning-Semantic-Scene-by-Tracking and Tracking-by-Learning-Semantic-Scene", Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1652-1659, 2010.

(3) X. Song, H. Zhao, J. Cui, X. Shao, R. Shibasaki, H. Zha, "Fusion of Laser and Vision for Multi-target Tracking via On-line Learning", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.406-411, 2010.

(2) X. Song, J. Cui, H. Zha, H. Zhao, "Vision-based Multiple Interacting Targets Tracking via On-line Supervised Learning", Proc. of European Conference on Computer Vision (ECCV), pp.642-655, 2008.

(1) X. Song, J. Cui, X. Wang, H. Zhao, H. Zha, "Tracking Interacting Targets with Laser Scanner via On-line Supervised Learning", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.2271-2276, 2008.


大发888可靠吗| 大发888登陆网页| 百家乐官网什么方法容易赢| 试玩百家乐代理| 桂东县| 百家乐庄闲几率| 水果机小游戏| 百家乐官网博彩技巧视频| 线上百家乐赌法| OK娱乐城| 百家乐与龙虎斗怎么玩| 博联百家乐官网游戏| 百家乐马渚| 百家乐官网现金网平台排行榜| 百家乐牌桌订做| 如何玩百家乐官网扑克| 金满堂百家乐的玩法技巧和规则| 百家乐官网微笑玩法| 大发888 ipad版| 帝王百家乐官网的玩法技巧和规则| 大发888手机版亚洲城| 百家乐连开6把小| 大发888下载新澳博| 百家乐官网筹码14克| 利博国际网址| 电脑版百家乐分析仪| 百家乐官网赌博网址| 大发888棋牌| 最好的百家乐博彩公司| 牙克石市| 百家乐缩水| 在线玩百家乐官网的玩法技巧和规则| 皇冠足球现金网| 网络百家乐官网棋牌| 天鸿德州扑克游戏币| 百家乐赌机玩法| 月华百家乐官网的玩法技巧和规则 | 线上百家乐官网可靠吗| 永利高a2| 百家乐里和的作用| 网络博彩qq群|