AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級(jí)       師資搜索
Iryna kashuba
副教授

教育背景: 
巴西圣保羅大學(xué),數(shù)學(xué)博士,2000年4月-2004年7月
德國(guó)凱澤斯勞滕大學(xué)數(shù)學(xué)碩士 1997年9月-2000年3月
基輔國(guó)立大學(xué)數(shù)學(xué)學(xué)士 1993年9月-1997年7月

工作經(jīng)歷:
南方科技大學(xué)副教授,2023-至今
圣保羅大學(xué)副教授,2013-2023年
2006-2013年,圣保羅大學(xué)助理教授


代表文章:

1. L. Bezerra, L. Calixto, V. Futorny, I. Kashuba, Representations of affiffiffine Lie superalgebras and their quantization in type A, Journal of Algebra 611, (2022), 320–340.
2. M. Guerrini, I. Kashuba, O. Morales, A. Oliveira, F. Santos Generalized Imaginary Verma and Wakimoto modules, Journal of Pure and Applied Algebra, 227, (2023), no. 7, 1–18.
3. Kashuba I., Mathieu O., ”O(jiān)n the free Jordan algebras”, Advances in Math., 383, (2021), 107690.
4. Borges V., Kashuba I., Sergeichuk V., Sodre E., Zaidan A., ”Classifification of Linear operators satisfying (Au, v) = (u, Arv) or (Au, Arv) = (u, v) on a vector space with indefifinite scalar product”, Linear Algebra and Appl., 611, (2021), 118-134.
5. Kashuba I., Serganova, V., ”Representations of simple Jordan superalgebra”, Advances in Math., 370, (2020), 107218.
6. Kashuba I., Futorny, V., ”Structure of parabolically induced modules for Affiffiffine Kac-Moody algebras”, Journal of Algebra, 500, (2018), 362-374.
7. Kashuba I., Martin, M. E., ”Geometric classifification of nilpotent Jordan algebras of dimension fifive”, Journal of Pure and Applied Algebra, 222 (3), (2018), 546-559.
8. Holubowski W., Kashuba I., Zurek S., ”Derivations of the Lie algebra of infifinite strictly upper triangular matrices over a commutative ring”, Comms. in Algebra, 45 (11), (2017), 4679-4685.
9. Kashuba I., Serganova, V., ”O(jiān)n the Tits-Kantor-Koecher construction of unital Jordan bimodules”, Journal of Algebra, 481, (2017), 420-463.
10. Kashuba I., Ovsienko S., Shestakov I., ”O(jiān)n representation type of Jordan basic algebras”, Algebra and Discrete Mathematics, 23 (1), (2017), 47-61.
11. Kashuba I., Martin, M. E., ”The variety of three-dimensional real Jordan algebras”, Journal of Algebra and Appl, 15 (8), (2016), 1650158.
12. Kashuba I., Zelenyuk Yu., ”The number of symmetric colorings of the dihedral group D3”, Quaestiones Mathematicae, 39(1), (2016), 65-71.
13. Kashuba I., Martin, M. E., ”Deformations of Jordan algebras of dimension four”, Journal of Algebra, 399, (2014), 277-289.
14. Kashuba I., Martin R., ”Free fifield realizations of induced modules for affiffiffine Lie algebras”, Communications in Algebra, 42 (6), (2014), 2428-2441.
15. Bekkert V., Benkart G., Futorny V., Kashuba I., ”New irreducible modules for Heisenberg and affiffiffine Lie algebras”, Journal of Algebra, 373, (2013), 284-298.
16. Hrivnak J., Kashuba I., Patera J., ”O(jiān)n E-functions of semi-simple Lie groups”, J.Physics A: Math. Gen., 44, (2011), 325205.
17. Kashuba I., Ovsienko S., Shestakov I., ”Representation type of Jordan algebras”, Advances in Math. , 226, (2011), 385-418.
18. Kashuba I., Shestakov I., ”An estimate of a dimension of a variety of alternative and Jordan algebras”, Contemporary Mathematics, 499, (2009), 165-171.
19. Futorny V., Kashuba I., ”Induced Modules for Affiffiffine Lie Algebras”, SIGMA, 5, (2009), 026.
20. Kashuba I., Patera J., ”Discrete and continuous exponential transform generalized to semisimple Lie groups of rank two”, J.Physics A: Math. Gen. 40 (2007), 4751-4774.
21. Kashuba, I. ; Shestakov, I., ”Jordan algebras of dimension three: geometric classifification and rep-resentation type”, In: XVI Coloquio Latinoamericano de ′Algebra, 2007, Colonia del Sacramento. Revista Matem′atica Iberoamericana.
22. Kashuba I., ”Variety of Jordan algebras in small dimensions”, Algebra Discrete Math., 2, (2006), 62-76.
23. Drozd Yu., Greuel G.-M., Kashuba I., ”O(jiān)n Cohen-Macaulay modules on surface singularities”, Moscow Mathematical Journal, 3 (2003), 397-418.
24. Kashuba I., Patera J., ”Graded contractions of Jordan algebras and of their representations”, J.Physics A: Math. Gen. 36 (2003), 12453-12473.
25. Futorny V., Kashuba I., ”Verma type modules for toroidal Lie algebras”, Communications in Algebra, 28 (8), (1999).


在线棋牌游戏| 百家乐官网如何投注技巧| 实战百家乐的玩法技巧和规则| 保时捷娱乐| 百家乐破解视频| 赌场| 百家乐赌王有哪些| 凯斯百家乐官网的玩法技巧和规则| 澳门百家乐必胜看| 太阳城百家乐官网看牌| 缅甸百家乐赌场| 百家乐官网国际娱乐城| 怎样赢百家乐官网的玩法技巧和规则 | 百家乐网上赌博| 足彩大赢家| 百家乐官网挂机软件| 百家乐赌博在线娱乐| 百家乐官网线上真人游戏| 大发888娱乐场优惠| 十六浦百家乐官网的玩法技巧和规则| 足球赛事直播| 黄金城百家乐官网苹果版| 威尼斯人娱乐场官网| 正规百家乐官网游戏下载| 新全讯网a3322.com| 百家乐官网德州| 喜达国际| 百家乐翻天在线观看| 百家乐怎样发牌| 希尔顿百家乐官网试玩| 皇冠网店| 百家乐网上赌场| 百家乐人生信条漫谈| 大发888电话多少| 百家乐官网园云鼎赌场娱乐网规则| 西和县| 地理风水24山72局杨公水法| 网络百家乐官网投注| 大发888信誉最新娱乐| 百家乐透视牌靴哪里有| 百家乐美女荷官|