AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級(jí)       師資搜索
Iryna kashuba
副教授

教育背景: 
巴西圣保羅大學(xué),數(shù)學(xué)博士,2000年4月-2004年7月
德國(guó)凱澤斯勞滕大學(xué)數(shù)學(xué)碩士 1997年9月-2000年3月
基輔國(guó)立大學(xué)數(shù)學(xué)學(xué)士 1993年9月-1997年7月

工作經(jīng)歷:
南方科技大學(xué)副教授,2023-至今
圣保羅大學(xué)副教授,2013-2023年
2006-2013年,圣保羅大學(xué)助理教授


代表文章:

1. L. Bezerra, L. Calixto, V. Futorny, I. Kashuba, Representations of affiffiffine Lie superalgebras and their quantization in type A, Journal of Algebra 611, (2022), 320–340.
2. M. Guerrini, I. Kashuba, O. Morales, A. Oliveira, F. Santos Generalized Imaginary Verma and Wakimoto modules, Journal of Pure and Applied Algebra, 227, (2023), no. 7, 1–18.
3. Kashuba I., Mathieu O., ”O(jiān)n the free Jordan algebras”, Advances in Math., 383, (2021), 107690.
4. Borges V., Kashuba I., Sergeichuk V., Sodre E., Zaidan A., ”Classifification of Linear operators satisfying (Au, v) = (u, Arv) or (Au, Arv) = (u, v) on a vector space with indefifinite scalar product”, Linear Algebra and Appl., 611, (2021), 118-134.
5. Kashuba I., Serganova, V., ”Representations of simple Jordan superalgebra”, Advances in Math., 370, (2020), 107218.
6. Kashuba I., Futorny, V., ”Structure of parabolically induced modules for Affiffiffine Kac-Moody algebras”, Journal of Algebra, 500, (2018), 362-374.
7. Kashuba I., Martin, M. E., ”Geometric classifification of nilpotent Jordan algebras of dimension fifive”, Journal of Pure and Applied Algebra, 222 (3), (2018), 546-559.
8. Holubowski W., Kashuba I., Zurek S., ”Derivations of the Lie algebra of infifinite strictly upper triangular matrices over a commutative ring”, Comms. in Algebra, 45 (11), (2017), 4679-4685.
9. Kashuba I., Serganova, V., ”O(jiān)n the Tits-Kantor-Koecher construction of unital Jordan bimodules”, Journal of Algebra, 481, (2017), 420-463.
10. Kashuba I., Ovsienko S., Shestakov I., ”O(jiān)n representation type of Jordan basic algebras”, Algebra and Discrete Mathematics, 23 (1), (2017), 47-61.
11. Kashuba I., Martin, M. E., ”The variety of three-dimensional real Jordan algebras”, Journal of Algebra and Appl, 15 (8), (2016), 1650158.
12. Kashuba I., Zelenyuk Yu., ”The number of symmetric colorings of the dihedral group D3”, Quaestiones Mathematicae, 39(1), (2016), 65-71.
13. Kashuba I., Martin, M. E., ”Deformations of Jordan algebras of dimension four”, Journal of Algebra, 399, (2014), 277-289.
14. Kashuba I., Martin R., ”Free fifield realizations of induced modules for affiffiffine Lie algebras”, Communications in Algebra, 42 (6), (2014), 2428-2441.
15. Bekkert V., Benkart G., Futorny V., Kashuba I., ”New irreducible modules for Heisenberg and affiffiffine Lie algebras”, Journal of Algebra, 373, (2013), 284-298.
16. Hrivnak J., Kashuba I., Patera J., ”O(jiān)n E-functions of semi-simple Lie groups”, J.Physics A: Math. Gen., 44, (2011), 325205.
17. Kashuba I., Ovsienko S., Shestakov I., ”Representation type of Jordan algebras”, Advances in Math. , 226, (2011), 385-418.
18. Kashuba I., Shestakov I., ”An estimate of a dimension of a variety of alternative and Jordan algebras”, Contemporary Mathematics, 499, (2009), 165-171.
19. Futorny V., Kashuba I., ”Induced Modules for Affiffiffine Lie Algebras”, SIGMA, 5, (2009), 026.
20. Kashuba I., Patera J., ”Discrete and continuous exponential transform generalized to semisimple Lie groups of rank two”, J.Physics A: Math. Gen. 40 (2007), 4751-4774.
21. Kashuba, I. ; Shestakov, I., ”Jordan algebras of dimension three: geometric classifification and rep-resentation type”, In: XVI Coloquio Latinoamericano de ′Algebra, 2007, Colonia del Sacramento. Revista Matem′atica Iberoamericana.
22. Kashuba I., ”Variety of Jordan algebras in small dimensions”, Algebra Discrete Math., 2, (2006), 62-76.
23. Drozd Yu., Greuel G.-M., Kashuba I., ”O(jiān)n Cohen-Macaulay modules on surface singularities”, Moscow Mathematical Journal, 3 (2003), 397-418.
24. Kashuba I., Patera J., ”Graded contractions of Jordan algebras and of their representations”, J.Physics A: Math. Gen. 36 (2003), 12453-12473.
25. Futorny V., Kashuba I., ”Verma type modules for toroidal Lie algebras”, Communications in Algebra, 28 (8), (1999).


百家乐官网网络赌博网址| 线上娱乐网站| 百家乐的玩法和技巧| 百家乐赌场娱乐网规则| 网球比赛直播| 大丰收百家乐官网的玩法技巧和规则| 百家乐赌场网| 大发888娱乐城游戏lm0| 单机百家乐官网破解方法| 新世百家乐的玩法技巧和规则| 苏尼特右旗| 钱隆百家乐大师| 狮威百家乐官网娱乐平台| 大发888中文版下载| 百家乐官网平注法到656| 七乐国际| 百家乐最低投注| 明升百家乐官网娱乐城| 威尼斯人娱乐场官网48008| 博彩百家乐官网字谜总汇| bet365娱乐场下载| 真钱百家乐开户试玩| 玩百家乐输澳门百家乐现场| CEO百家乐官网现金网| 威尼斯人娱乐城真钱百家乐| 新时代百家乐官网的玩法技巧和规则| OK娱乐城| 百家乐博百家乐的玩法技巧和规则 | 澳门百家乐官网一把决战输赢| 百家乐PK| 赌场百家乐官网技巧| 现金网制作| 百家乐9点直赢| 在线百家乐官网纸牌| 元谋县| 运城百家乐的玩法技巧和规则| 网络百家乐官网玩法| 网上真钱棋牌游戏| 大赢家百家乐娱乐| 澳门百家乐群策略| 先锋百家乐官网的玩法技巧和规则 |