AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
YANG Jiang
Associate Professor
yangj7@sustech.edu.cn

Research interest:
◆ Numerical Partial Differential Equations
◆ Numerical solutions of phase field models and their applications
◆ Numerical solutions of nonlocal models and their applications

Educational Background:
◆ Ph.D. of Applied Mathematics, Hong Kong Baptist University, 2014.
◆ B.S. of Mathematics, Zhejiang University, 2010.

Professional Experience:
◆ Assistant Professor, Associate Professor, Southern University of Science and Technology, 2017/07- present.
◆ Postdoc, Columbia University, 2015/08 - 2017/07.
◆ Postdoc, Penn State University, 2014/08 - 2015/08.

Honors & Awards:
◆ Student Paper Prize at 10th East Asia SIAM Conference, 2014.
◆ Yakun Scholarship Scheme, Hong Kong Baptist University, 2014.

Selected Publications
Q. Du, J. Yang, and W. Zhang,
Numerical analysis on the uniform $L^p$-stability of Allen-Cahn equations, to appear in Int. J. Numer. Anal. Mod..

T. Hou, T. Tang and J. Yang,
Numerical analysis of fully discretized Crank--Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., doi:10.1007/s10915-017-0396-9.

Q. Du and J. Yang,
Fast and Accurate Implementation of Fourier Spectral Approximations of Nonlocal Diffusion Operators and its Applications, J. Comput. Phys., 332 (2017), 118-134.

Q. Du, Y. Tao, X. Tian and J. Yang,
Robust a posteriori stress analysis for approximations of nonlocal models via nonlocal gradients, Comp. Meth. Appl. Mech. Eng., 310 (2016), 605-627.

Q. Du and J. Yang,
Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numer. Anal., 54(3) (2016), 1899-1919.

X. Feng, T. Tang and J. Yang,
Long time numerical simulations for phase-field problems using \emph{p}-adaptive spectral deferred correction methods, SIAM J. Sci. Comput., 37 (2015), A271-A294.

W. Zhang, J. Yang, J. Zhang, and Q. Du,
Artificial boundary conditions for nonlocal heat equations on unbounded domain, Comm. Comp. Phys., 21(1) (2017), 16-39.

J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Comm. Math. Sci., 14(6) (2016), 1517-1534.

Q. Du, J. Yang and Zhi Zhou,
Analysis of a nonlocal-in-time parabolic equations, Dis. Cont. Dyn. Sys. B, 22(2) (2017), 339-368.

T. Tang and J. Yang,
Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34(5) (2016), 471-481.

X. Feng, T. Tang and J. Yang,
Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian Journal on Applied Mathematics, 3 (2013), pp. 59-80.

X. Feng, H. Song, T. Tang, and J. Yang,
Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Problems and Imaging, Volume 7 (2013), pp. 679 - 695.

玩百家乐官网去哪个娱乐城最安全| 做生意讲究风水吗| 百家乐官网翻天youtube | 大发888蜜月旅行| 百家乐娱乐城优惠| 百家乐官网作弊手段| 大发888全球顶级游戏平台| 传奇百家乐官网的玩法技巧和规则| 全讯网网站xb112| 现金百家乐伟易博| 百家乐官网最好的投注法| 大发888好么| 奔驰百家乐游戏电玩| 阿玛尼百家乐官网的玩法技巧和规则| 皇冠足球走地| 百家乐什么叫缆| 保单机百家乐官网破解方法| 澳门顶级赌场国际| 钱隆百家乐的玩法技巧和规则| 至尊百家乐官网qvod| 958棋牌游戏| 南京百家乐赌博现场被| 百家乐官网在线投注顺势法| 娱乐城送体验金38元| 神人百家乐赌博| 百家乐全程打庄| 百家乐官网有没有破解之法| 易玩棋牌怎么样| 百利宫百家乐的玩法技巧和规则 | 百家乐官网开户送8彩金| 澳门新葡京赌场| 大发8888娱乐城 真钱| 百家乐网址皇冠现金网| 百家乐官网澳门有网站吗| 海南博彩业| 大发888网址是什么| 百家乐官网百家乐官网论坛| 沿河| 诺贝尔百家乐的玩法技巧和规则| 阳宅24山吉凶方位| 百家乐官网用品|