AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Xuyang Wu
Associate Professor
wuxy6@sustech.edu.cn

Xuyang Wu received the Bachelor of Science degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and the Ph.D. degree in Communication and Information Systems from the University of Chinese Academy of Sciences, China, in 2020. From 2020 - 2023, He was a postdoctoral researcher at KTH Royal Institute of Technology, Sweden. He is currently an associate professor in the School of  Automation and Intelligent Manufacturing (AiM, Former: School of System Design and Intelligent Manufacturing), Southern University of Science and Technology, Shenzhen, China. His research interests include distributed and large-scale optimization, machine learning, and related areas. He has published 7 first-authored papers on top-tier journals in the control society and AI conferences, including 5 papers on IEEE Transactions on Automatic Control (IEEE TAC) and Automatica, and 2 papers on International Conference on Machine Learning (ICML).


Learn more: http://xuyangwu.github.io


Education Background

◆ Sep. 2015 - Aug. 2020
Ph.D student, Communication and Information Systems, The University of Chinese Academy of Sciences, China.

◆ Sep. 2011 - Jul. 2015

B.S. student, Applied Mathematics, Northwestern Polytechnical University, China.


Working Experience

◆ Jun. 2025 - present.
Associate Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.

◆ Feb. 2024 - Jun. 2025.

Assistant Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.
◆ Dec. 2023 - Jan. 2024.

Visiting Scholar, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong
◆ Dec. 2020 - Nov. 2023
Postdoctoral Researcher, Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden.


Research Area

Distributed and large-scale optimization, machine learning, and related areas.


Publications

[1] X. Wu, S. Magnusson, and M. Johansson. “Distributed Safe Resource Allocation using Barrier Functions”, Automatica, 2023.

[2] X. Wu, H.R. Feyzmahdavian, S. Magnusson, M. Johansson. “Delay-adaptive Step-sizes for Asynchronous Learning”, Proc. International Conference on Machine Learning (ICML), 2022.

[3] X. Wu, C. Liu, S. Magnusson, M. Johansson. “Delay-agnostic Asynchronous Coordinate Update Algorithm”, Proc. International Conference on Machine Learning (ICML), 2023.

[4] X. Wu, H. Wang, and J. Lu. “Distributed Optimization with Coupling Constraints”, IEEE Transactions on Automatic Control, 2023.

[5] X. Wu and J. Lu. “A Unifying Approximate Method of Multipliers for Distributed Composite Optimization”, IEEE Transactions on Automatic Control, 2023.

[6] X. Wu, Z. Qu, and J. Lu. “A Second-Order Proximal Algorithm for Consensus Optimization”, IEEE Transactions on Automatic Control, 2021.

[7] X. Wu and J. Lu. “Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks”, IEEE Transactions on Automatic Control, 2019.


轮盘必胜法| 察雅县| 中山市| 百家乐官网官方游戏| 竞咪百家乐官网的玩法技巧和规则| 太阳城娱乐官方网站| 百家乐7赢6| 百家乐官网二十一点| 百家乐官网园sun811 | 阿荣旗| 大中华百家乐的玩法技巧和规则| 澳门百家乐官网有没有假| 大发888娱乐送体验金| 网上百家乐官网赌博出| 台北市| 使用的百家乐软件| 百家乐官网必胜课| 澳门葡京| 二八杠算法| 温州市百家乐ktv招聘| 百家乐官网龙虎台布多少钱| 金殿百家乐的玩法技巧和规则| 玩百家乐官网如何看路| 大发888怎么代充| 天天乐娱乐城| 百家乐视频软件下载| 立博| 真人百家乐是真的吗| 百家乐官网赌博工具| 曼哈顿娱乐城| 金逸太阳城团购| 线上百家乐赌法| 金彩百家乐官网的玩法技巧和规则| 青河县| 大发888网页登录帐号| 大发888娱乐城dknmwd| 百家乐官网赌场论坛博客| 拉斯维加斯娱乐城| 最好的棋牌游戏平台| 老虎机定位器| 蓝盾百家乐打法|