AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Xiandeng WU
Associate Professor
wuxd3@sustech.edu.cn

Self-introduction:

Dr. Wu received a B.S. degree in Biological Science from Nanjing University in 2016, and obtained his Ph.D. degree in Life Science with Dr. Mingjie Zhang at Hong Kong University of Science and Technology in 2021. He continued postdoctoral training until 2024, where he systematically demonstrated that the presynaptic terminal is profoundly organized via phase separation. He joined Southern University of Science and Technology in 2025 as an assistant professor, and devoted to understanding how phase separation contributes to presynaptic organization and function, as well as general implications of phase separation in communication between membraneless condensates and membranous organelles. Dr. Wu has published in Cell, Molecular Cell, Developmental Cell, Annual Review of Neuroscience, ect.


Research Interests:

Phase separation has been increasingly recognized as a general principle of cellular compartmentalization. Neuronal synapse is a highly specialized and polarized structure, where synaptic compartmentalization fundamentally participates in neuronal assembly and function. We are committed to investigating how phase separation underlies presynaptic compartments formation and dynamic regulation, as well as their functional implication to synaptic transmission, synapse formation, and synaptic plasticity. We particularly interested in:

◆ How does phase separation orchestrate synaptic vesicle cycling?

◆ How do multiple compartments interact with each other in the presynaptic bouton?

◆ How do pre- and post-synaptic compartments synergize with each other in response to synaptic stimulation and plasticity?

◆ How does phase separation contribute to membraneless condensates communication with membranous organelles in general?


Professional Experience:

◆ 2025.01-present, Assistant Professor, Southern University of Science and Technology

◆ 2021.07-2024.12, Postdoctoral Fellow, Hong Kong University of Science and Technology


Educational Background:

◆ 2016.09-2021.06, PhD, Life Sciences, Hong Kong University of Science and Technology.

◆ 2012.09-2016.06, B.S., Biological Science, Nanjing University.


Honors & Awards:

◆ 2021 Hong Kong RGC Postdoctoral Fellowship Scheme (2021-2024)

◆ 2019 School of Science Postgraduate Research Excellence Award, HKUST

◆ 2016 Excellent graduate, Outstanding dissertation, Nanjing University

◆ 2014 China National scholarship, Ministry of Education of China


Selected Publication:

Wu, X., Shen, Z., & Zhang, M.* (2025). Phase separation-mediated compartmentalization underlies synapse formation and plasticity. Annual Review of Neuroscience, [invited review]

◆ Qiu, H.#, Wu, X.#, Ma, X., Li, S., Cai, Q., Ganzella, M., Ge, L., Zhang, H., & Zhang, M.* (2024). Short-distance vesicle transport via phase separation. Cell, 187 (9), 2175-2193.e21. (co-first author)

Wu, X., Qiu, H., & Zhang, M.* (2023). Interactions between membraneless condensates and membranous organelles at the presynapse: a phase separation view of synaptic vesicle cycle. Journal of Molecular Biology. [invited review]

Wu, X., Ganzella, M., Zhou, J., Zhu, S., Jahn, R., Zhang, M.* (2021). Vesicle Tethering on the Surface of Phase Separated Active Zone Condensates. Molecular Cell, 81(1), 13-24.

Wu, X., Cai, Q., Feng, Z., & Zhang, M.* (2020). Liquid-liquid phase separation in neuronal development and synaptic signaling. Developmental Cell, 55(1), 18-29. [invited review]

Wu, X.#, Cai, Q.#, Shen, Z., Chen, X., Zeng, M., Du, S., & Zhang, M.* (2019). RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Molecular cell, 73(5), 971-984.


Other Info:

◆ Zhu, S., Shen, Z., Wu, X., & Zhang, M.* (2025). Phase separation in the multi-compartment organization of synapses. Current Opinion in Neurobiology, 90, 102975.

◆ Zhu, S.#, Shen, Z.#, Wu, X., Han, W., Jia, B., Lu, W., & Zhang, M.* (2024). Demixing is a default process for biological condensates formed via phase separation. Science, 384(6698), 920-928.

◆ Cai, Q., Zeng, M., Wu, X., Wu, H., Zhan, Y., Tian, R., & Zhang, M.* (2021). CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Research, 31(1), 37-51.

◆ Feng, Z., Wu, X., & Zhang, M.* (2021). Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology, 193, 108622. [invited review]

Wu, X.#, Cai, Q.#, Chen, Y., Zhu, S., Mi, J., Wang, J., & Zhang, M.* (2020). Structural Basis for the High-Affinity Interaction between CASK and Mint1. Structure, 28(6), 664-673.

◆ Chen, X., Wu, X., Wu, H., & Zhang, M.* (2020). Phase separation at the synapse. Nature Neuroscience, 23(3), 301–310. [invited review]

◆ Feng, Z., Chen, X., Wu, X., & Zhang, M.* (2019). Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 294(40), 14823-14835. [invited review]

永新县| 百家乐官网走势图备用网站| 全讯网xb112| 百家乐官网平台出租家乐平台出租 | 大发888免费游戏| 云顶国际娱乐开户| 菏泽市| 百家乐桌布橡胶| 百家乐官网咨询网址| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 嘉兴太阳城大酒店| 电脑赌百家乐官网可靠吗| 大发888娱乐免费试玩| 百家乐官网六手变化混合赢家打| 7298棋牌官网| 百家乐游戏机论坛| 百家乐官网永利娱乐场| 大富翁娱乐城| 手机百家乐能兑换现金棋牌游戏| 金三角百家乐官网的玩法技巧和规则 | 北京百家乐网上投注| 大埔区| 百家乐怎么玩请指教| 2024年九运| 大发百家乐官网现金| 同乐城娱乐城| 大发888投注鸿博博彩| 百家乐计划| 百家乐官网游戏筹码| 百家乐官网洗码软件| 百家乐龙虎台布多少钱| 月亮城百家乐官网的玩法技巧和规则 | 百家乐和的几率| 百家乐官网娱乐备用网址| 康马县| 大发888娱乐场 东南网| 百家乐棋牌辅助| 乌兰浩特市| 大发888游戏在线客服| 百家乐羸钱法| 真人百家乐赌博技巧|