AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
WEI Lei
Associate professor
weil@sustech.edu.cn

Dr. Lei Wei received his Ph.D. in mechanical engineering from Hong Kong University of Science and Technology (HKUST) in 2017. He was a postdoctoral research fellow at HKUST Energy Institute from 2018 to 2021. His research interests mainly include the development of materials and devices for flow batteries and electrochemical energy storage systems. He has published more than 70 research articles in journals such as Energy Storage Materials, International Journal of Heat and Mass Transfer, Science Bulletin, etc. His Google Scholar Citation is over 2600 times and his H-index is 28. He has been serving as a long-time reviewer for SCI journals such as Applied Energy and Applied Thermal Engineering.

Research Area:
◆Mass transfer and energy conversion characteristics of redox flow batteries;
◆Development of commercial flow battery stacks;
◆Study on combined energy storage system of hydrogen storage and inorganic e-fuel;
◆Energy storage policy and market demand analysis under emission peak and carbon neutrality.

Work Experience:
◆Oct.2021-present, Research Associate Professor, Department of Mechanical and Energy Engineering, Southern University of Science and Technology.
◆Mar.2021 to Sep.2021, Associate Professor, School of Materials and Energy Engineering, Guangdong University of Technology.
◆Feb.2018 to Feb.2021, Postdoctoral Fellow, Energy Institute, Hong Kong University of Science and Technology.

Education:
◆Ph.D.2017, Department of Mechanical Engineering, Hong Kong University of Science and Technology.
◆M.S.2013, Power Engineering and Engineering Thermophysics, Xi'an Jiaotong University, China.
◆B.S.2009, Department of Materials Science and Engineering, Xi'an Jiaotong University, China.

Professional Recognition:
◆Core member of Advanced Energy Storage Technology Laboratory, Southern University of Science and Technology.
◆7 papers were selected as ESI highly cited papers.

Representative Papers:
◆ L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Applied Energy. 2016;176:74-9.
◆ L. Wei, T.S. Zhao, Q. Xu, X.L. Zhou, Z.H. Zhang. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Applied Energy. 2017;190:1112-8.
◆ L. Wei, C. Xong, H.R. Jiang, X.Z. Fan, T.S. Zhao. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Storage Materials. 2019; 25: 885-892.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources. 2017;341:318-26.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Applied Energy. 2016;180:386-91.
◆ L. Wei, M.C Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage. Applied Energy. 2018;215:98-5.
◆ L. Wei, L. Zeng, M.C Wu, H.R. Jiang, T.S. Zhao. An aqueous manganese-copper battery for large-scale energy storage applications. Journal of Power Sources. 2019;423:203-210.
◆ L. Wei, L. Zeng, M.C. Wu, X.Z. Fan, T.S. Zhao. Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries. Applied Energy. 2019;251:113344.
◆ L. Wei, H.R. Jiang, Y.X. Ren, M.C Wu, J.B. Xu, T.S. Zhao. Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage. Journal of Power Sources. 2019;437: 226918.
◆ L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng. Titanium Carbide Nanoparticle‐Decorated Electrode Enables Significant Enhancement in Performance of All‐Vanadium Redox Flow Batteries. Energy Technol-Ger. 2016;4:990.
◆ L. Wei, X. Fan, H. Jiang, K. Liu, M. Wu, T. Zhao, Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method, Journal of Power Sources, 2020; 478; 228725.
◆ L. Wei, Z.X. Guo, J. Sun, X.Z. Fan, M.C. Wu, J.B. Xu, T.S. Zhao. A convention enhanced flow field for aqueous redox flow batteries. International Journal of Heat and Mass Transfer,2021; 179, 121747.

百家乐官网平六亿财富| 百家乐官网园云鼎赌场娱乐网规则| 凌龙棋牌官方下载| 赌百家乐官网可以赢钱| 申博太阳城娱乐网| 百家乐官网是咋玩法| 谈谈百家乐赢钱技巧| 菲律宾百家乐官网游戏| 威尼斯人娱乐城打造| 百家乐官网大钱赢小钱| 535棋牌游戏| 免费百家乐官网分析工具| 赌场风云| 成人百家乐的玩法技巧和规则| 百家乐官网高手长胜攻略| 百家乐打闲赢机会多| 百家乐官网高命中投注| 大发888 m摩卡游戏| 在线百家乐官方网| 百家乐赌场游戏平台| 百家乐官网评级网站| 睢宁县| 威尼斯人娱乐棋牌平台| 现场百家乐百家乐| 网络百家乐官网网站| 皇冠在线赌场| 新世百家乐的玩法技巧和规则 | 威尼斯人娱乐场官网h00| 东营区百家乐官网艺术团| 东平县| 大发888网页登录| 百家乐百博亚洲| 24山家坐向| 百家乐官网赌场博彩赌场网| 黔东| 新全讯网网址g2vvv| 百家乐龙虎台布作弊技巧| 9人百家乐官网桌布| 台山市| 足球开户网| 电子百家乐|