AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Hao Wang
Associate Researcher
wangh@sustech.edu.cn

Research Field

condensed matter theory, fractional quantum Hall effect system

 

Educational Background

2000.08-2006.12, Ph.D. (condensed matter physics), University of Minnesota, USA

1997.09-2000.07 M.S. (condensed matter physics), Tsinghua University

1992.09-1997.07 B.S. (modern applied physics), Tsinghua University

 

Working Experience

2013.02-2018.08 Assistant Professor, Department of Physics, Southern University of Science and Technology

2011.08-2013.02? Postdoc/Research Assistant Professor, Department of Physics, University of Hong Kong

2009.08-2011.08? Postdoc, Department of Physics, Virginia Tech., USA

2007.01-2009.08? Postdoc, Department of Physics, California State University at Northridge, USA

 

Papers and Patents

1. Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer Hubbard model, Jie Yuan, Dong-Hui Xu, Hao Wang, Yi Zhou, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 88, 201109(R) (2013).
2. Layer antiferromagnetic ground state in bilayer graphene: a first-principle investigation, Yong

Wang, Hao Wang, Jin-hua Gao, and Fu-chun Zhang, Phys. Rev. B 87, 195413 (2013).

3. Flat band electrons and interactions in rhombohedral trilayer graphene, Hao Wang, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 87, 155116 (2013).
4. Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions, Hao Wang, Rajesh Narayanan, Xin Wan, and Funchun Zhang, Phys. Rev. B 86, 035122 (2012).
5. Models of strong interaction in flat-band graphene nanoribbons: magnetic quantum crystals, Hao Wang and V. W. Scarola, Phys. Rev. B 85, 075438 (2012).
6. Jastrow-correlated wavefunctions for flat-band lattices, Hao Wang and V. W. Scarola, Phys. Rev. B 83, 245109 (2011).
7. Identifying quantum topological phases through statistical correlation, Hao Wang, B. Bauer, M. Troyer, and V. W. Scarola, Phys. Rev. B 83, 115119 (2011).
8. Particle-hole symmetry breaking and 5/2 fractional quantum hall effect, Hao Wang, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B 80, 241311(R) (2009).
9. Broken-symmetry states of Dirac fermions in graphene with a partially filled high landau level, Hao Wang, D. N. Sheng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 100, 116802 (2008).
10. Unconventional magnetic vortex structures observed in micromagnetic simulations, M. Yan, H. Wang, and C. E. Campbell, J. Magn. Magn. Mater. 320,?1937?(2008).
11.

 

Spin dynamics of a magnetic anitvortex: micromagnetic simulations, Hao Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007).
12. Vorticity and antivorticity in submicron ferromagnetic films, Hao Wang, M. Yan and C. E. Campbell, Int. J. Mod. Phys. B 21, 2289 (2007).
13. Spin wave modes in thin-film ferromagnetic stripes, M. Yan, H. Wang, P. A. Crowell, C. E. Campbell, and C. Bayer, Condensed Matter Theories, vol. 20, Ed. J. W. Clark, R. M. Panoff, and H. Li, Nova Scientific, New York, 251-263 (2006).
14. Spin waves in an inhomogeneously magnetized stripe, C. Bayer, J. P. Park, H. Wang, M. Yan, C. E. Campbell, and P. A. Crowell, Phys. Rev. B 69, 134401 (2004).
15. Spin-resonant suppression and enhancement in ZnSe/Zn1-xMnxSe multiplayer heterostructures, Y. Guo, B.-L. Gu, H. Wang, and Y. Kawazoe, Phys. Rev. B 63, 214415 (2001).
16. Spin-polarized transport through a ZnSe/Zn1-xMnxSe heterostructure under an applied electric field, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000).
17. Electric-field effects on electronic tunneling transport in magnetic barrier structures, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, Phys. Rev. B 61, 1728 (2000).
18. Electron coherent tunneling in low-dimensional magnetic quantum structures, Yong Guo, Hao Wang, Bing-Lin Gu, and Yoshiyuki Kawazoe, Physica E 8, 146 (2000).
19. Wave-vector-dependent tunneling transmission characteristics in periodic and quasiperiodic semiconductor supperlattices, Guo Yong, Wang Hao, and Gu Bing-Lin, Tsinghua Science and Technology 5(2), (2000).
20. Transport of electrons in double-barrier magnetic structures under a constant electric field, Wang Hao, Guo Yong, and Gu Bing-Lin, Acta Physics Sinica 48(9), 1723 (1999).

 

大西洋百家乐的玩法技巧和规则 | 金满堂百家乐的玩法技巧和规则| 百家乐官网翻天在线观看| 百家乐官网澳门百家乐官网澳门赌场| 百家乐作弊视频| 博发百家乐的玩法技巧和规则| 大发888收获| 视频百家乐官网平台出租| 百家乐官网博娱乐网提款速度快不| 如何打百家乐官网的玩法技巧和规则| 博彩百家乐后一预测软件| 大发888总结经验| 百家乐官网换人| 博九百家乐的玩法技巧和规则| 大发888充钱| 博彩百家乐官网软件| 捷豹百家乐官网的玩法技巧和规则| 最好的百家乐论坛| 德州扑克qq| 百家乐游戏平台排名| 大发888充值卡| 如何赢百家乐官网的玩法技巧和规则| 大发888娱乐城取款| 百家乐官网是否有路子| 凱旋门百家乐官网的玩法技巧和规则 | 百家乐风云论坛| 88娱乐城天上人间| 百家乐网址哪里有| 哪个棋牌游戏平台好| 赌博千术| 澳门百家乐家用保险柜| 六合彩特码开奖结果| 百家乐官网路单| bet365 体育在线uo| 百家乐官网那个平台信誉高| 海立方百家乐官网客户端| 百家乐官网博彩通博彩网皇冠网澳门赌场真人赌博 | 百家乐官网也能赢钱么| 百家乐庄闲的分布| 百家乐官网视频多开器| 最好的百家乐投注|