AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Ri Wu
Assistant Professor
wuri@sustech.edu.cn

Dr. Ri Wu received his B.Sc. in 2013 from Qian Weichang College, Shanghai University, under the supervision of Dr. Zhen Zhou. He obtained his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2019, mentored by Prof. Dominic Tak Wah Chan. His doctoral research focused on developing differential ion mobility spectrometry (DMS) with enhanced ion transmission efficiency and separation capacity, applying it to the analysis of isomeric and anomeric species in natural products and glycopeptides.

From 2019 to 2025, he was a postdoctoral researcher and senior scientist at ETH Zurich, working with Prof. Dr. Renato Zenobi. His research focused on advancing bioanalytical mass spectrometry techniques by integrating fluorescence spectroscopy, ion mobility spectrometry, and ultra-high-resolution mass spectrometry, with applications in dynamic structural analysis of biomolecules and their noncovalent interactions.

In February 2025, he joined Southern University of Science and Technology (SUSTech) as an Assistant Professor and Principal Investigator, jointly affiliated with Center for Advanced Light Source and Department of Chemistry. His independent research focuses on developing novel mass spectrometry methodologies and instrumentation.

To date, he has pioneered the development of gas-phase fluorescence-mass spectrometry techniques, including:

1. The construction of a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer, including ion optics, a Penning ion trap, and associated data acquisition and control systems, enabling laser-induced fluorescence (LIF) measurements of mass-selected ions.

2. The introduction of a hybrid bioanalytical approach that integrates F?rster resonance energy transfer (FRET) with native ion mobility mass spectrometry, providing structural insights into peptide/protein dynamics and transient interactions. This method enables multi-dimensional analysis—from donor-acceptor distances, collision cross-section, and microsolvation effects—offering new perspectives on metal ion-mediated misfolding, early-stage oligomerization, and drug structure-activity relationships.

Over the past five years, he has published multiple first-author or co-corresponding-author papers, including: J. Am. Chem. Soc. (3), Nat. Commun., Anal. Chem. (2), J. Phys. Chem. Lett., and holds eight granted Chinese patents.

Open Positions

The group is actively recruiting Master and Ph.D. students, postdoctoral researchers, and research assistants. Interested candidates are strongly encouraged to contact wuri@sustech.edu.cn.

Research Interests

1. Advancing mass spectrometry methodologies integrated with cutting-edge photon sources, with a particular focus on "MS + FRET" techniques. This approach synergizes with native MS, ion mobility spectrometry, native top-down MS (e.g., CID, ECD, UVPD), chemical crosslinking, and hydrogen-deuterium exchange to investigate biomolecular dynamics and functional correlations.

2. Developing innovated FT-ICR MS, "MS + fluorescence spectroscopy," and ion mobility spectrometry instrumentation and methodologies.

Selected Publications

1. Benzenberg, L. R.?; Katzberger, P.?, Wu R.*, Metternich, J. B.; Riniker, S.*, and Zenobi, R.* Probing the Stability of a β-Hairpin Scaffold after Desolvation. J. Phys. Chem. Lett. 2024, 15, 5041–5046.

2. Wu, R.?; Svingou, D.?; Metternich, J. B.; Benzenberg, L. R.; Zenobi, R.* Transition Metal Ion FRET-Based Probe to Study Cu(II)-Mediated Amyloid-β Ligand Binding. J. Am. Chem. Soc. 2024, 146, 2102–2112.

3. Wu, R.?; Metternich, J. B.?; Kamenik, A. S.?; Tiwari, P.; Harrison, J. A.; Kessen, D.; Akay, H.; Benzenberg, L. R.; Chan, T.-W. D.; Riniker, S.*; Zenobi, R.* Determining the Gas-Phase Structures of α-Helical Peptides from Shape, Microsolvation, and Intramolecular Distance Data. Nat. Commun. 2023, 14, 2913.

4. Wu, R.?*; Benzenberg, L. R.?; Svingou, D.; Zenobi, R.* The Structure of Cyclic Neuropeptide Somatostatin and Octapeptide Octreotide in the Presence of Copper Ions: Insights from Transition Metal Ion FRET and Native Ion Mobility-Mass Spectrometry. J. Am. Chem. Soc. 2023, 145, 10542–10547.

5. Wu, R.; Metternich, J. B.; Tiwari, P.; Benzenberg, L. R.; Harrison, J. A.; Liu, Q.; Zenobi, R.* Structural Studies of a Stapled Peptide with Native Ion Mobility-Mass Spectrometry and Transition Metal Ion F?rster Resonance Energy Transfer in the Gas Phase. J. Am. Chem. Soc. 2022, 144, 14441–14445.

6. Wu, R.; Metternich, J. B.; Tiwari, P.; Zenobi, R.* Adapting a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Fluorescence Spectroscopy Measurement of Trapped Biomolecular Ions. Anal. Chem. 2021, 93, 15626–15632.


忻城县| 大发888的促销代码| 线上百家乐官网试玩| 百家乐连闲几率| 大发888娱乐场 zb8| 南郑县| 澳门百家乐21点| bet365提款| 大发888信誉最新娱乐| 百家乐官网赌博技巧网| 百家乐统计软件| 连环百家乐怎么玩| 百家乐官网百家乐官网群| 折式百家乐赌台| 网上娱乐城老虎机| 赌场百家乐官网的玩法技巧和规则| 申烨太阳城三期| 真人百家乐庄闲| 优博百家乐官网yobo88| 大玩家百家乐的玩法技巧和规则| 申博百家乐官网公式软件| 大发888官方备用网址| 金海岸百家乐官网的玩法技巧和规则 | 菠菜百家乐官网娱乐城| 百家乐怎么样投注| 百家乐官网视频游戏界面| 龍城百家乐的玩法技巧和规则| 网上百家乐官网必赢玩| 皇冠足球现金网| 百家乐棋牌游戏皇冠网| 百家乐官网折桌子| bet365备用网| 百家乐科学打法| 百家乐官网如何打轮盘| E乐博百家乐| 百家乐园百乐彩| 百家乐图表分析| 百家乐官网如何投注法| 德州扑克视频教学| 首席百家乐的玩法技巧和规则| 博狗百家乐真实|