AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


爱赢百家乐现金网| 迪威百家乐官网娱乐场| 全讯网3532888| 香港六合彩85期开奖结果| A8百家乐官网现金网| 大发888线上娱乐城百家乐| 易博全讯网| 百家乐官网路单下| 免费百家乐游戏下| 大发888-娱乐| 百家乐官网出庄几率| 昆明百家乐装修装潢有限公司| 网上百家乐网站导航| 赌球网址| 百家乐官网从哪而来| 做生意看风水| 香港六合彩论坛| 百家乐官网出老千视频| 百家乐官网游戏唯一官网网站| 乐九百家乐现金网| 丹阳棋牌游戏中心| 百家乐官网太阳城球讯网| 娱乐城百家乐打不开| 威尼斯人娱乐城送钱| 众发娱乐城| 百家乐官网路单| 百家乐路的看法| 大发888娱乐捕鱼游戏| 真人百家乐官网新开户送彩金| 百家乐官网官方网站| 大发888游戏平台888| 百家乐官网优惠高的网址| 百家乐官网高| 棋牌游戏| 免费百家乐娱乐城| 盖州市| 真人百家乐娱乐场开户注册| 赌博百家乐官网探讨| 金钱豹百家乐的玩法技巧和规则| 百家乐官网高人玩法| 威尼斯人娱乐城提款|