AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


大发888 zhldu| 德州扑克怎么玩的| 蓝盾百家乐官网赌场娱乐网规则 | 百家乐官网娱乐网网77scs| 百家乐开户导航| 九头鸟棋牌游戏中心| 网络百家乐官网真假| 联合百家乐的玩法技巧和规则 | 塘沽区| 澳门百家乐国际| 真钱百家乐| 百家乐六合彩| 百家乐官网代理占成| 迁西县| 百家乐公式书| 菲律宾百家乐官网排行| 大发888游戏平台 官方| 百家乐官网赌博合作| 大发888二十一点| 百家乐官网科学打| 太阳城直属现金网| 澳门百家乐官网国际娱乐城| 百家乐小游戏单机版| 百家乐官网伴侣破解版| 大发888 配置要求| 百家乐官网免费体验金| zaixian百家乐| 百家乐在线赌场| 网上百家乐真钱游戏| 全讯网百家乐官网的玩法技巧和规则 | 太阳城百家乐官网外挂| 星河百家乐的玩法技巧和规则| 送彩金百家乐官网平台| 大发888下载安全的| 百家乐游戏怎么刷钱| E乐博百家乐官网娱乐城| bet365 备用| 养狗对做生意风水好吗| 海盐县| 大发888真人存款| 太阳百家乐破解|