AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Liang Kong
Professor
kongl@sustce.edu.cn

Essential Information

Name:Liang Kong

Position:Professor

Email:kongl@sustce.edu.cn

Research Field:Mathematical Physics (Topological field theories, 2d conformal field theories, category theory, representation theory, topological phases of matters)


Educational Background

2005.10  Ph.D in Mathematics, Rutgers, the State University of New Jersey

1997.5  Master in Physics, University of Houston

1994.7  B.S. in Physics, University of Science & Technology of China


Papers

1.   Open-string vertex algebras, categories and operads, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 250 (2004) 433–471, [arXiv:math/0308248]

2.   Full field algebras, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 272 (2007) 345–396, [arXiv:math/0511328]

3.   Full field algebras, operads and tensor categories, Liang Kong, Adv. Math. 213 (2007) 271–340, [arXiv:math/0603065]

4.   Modular invariance for conformal full field algebras, Yi-Zhi Huang, Liang Kong, Trans. Amer. Math. Soc. 362 (2010) 3027–3067, [arXiv:math.QA/0609570]

5.   Open-closed field algebras, Liang Kong, Comm. Math. Phys., 280, 207-261 (2008) [arXiv:math.QA/0610293]

6.   Cardy condition for open-closed field algebras, Liang Kong, Comm. Math. Phys. 283, 25–92 (2008) [arXiv:math/0612255]

7.    Morita classes of algebras in modular tensor categories, Liang Kong, Ingo Runkel, Adv. Math. 219, 1548–1576 (2008) [arXiv:0708.1897]

8.    Cardy algebras and sewing constraints, I, Liang Kong, Ingo Runkel, Comm. Math. Phys. 292, 871–912 (2009) [arXiv:0807.3356]

9.    Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Liang Kong, Ingo Runkel, Noncommutative structures in Mathematics and Physics, 217–238, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, [arXiv:0902.3829]

10.  Field theories with defects and the centre functor, Alexei Davydov, Liang Kong, Ingo Runkel, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS Vol. 83 (2011) 71–128 [arXiv:1107.0495]

11.  Conformal field theory and a new geometry, Liang Kong, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS, Vol. 83 (2011) 199–244 [arXiv:1107.3649]

12.   Invertible defects and isomorphisms of rational CFTs, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Theor. Math. Phys., 15, (2011) 43–69 [arXiv:1004.4725]

13.   Models for gapped boundaries and domain walls, Alexei Kitaev, Liang Kong, Comm. Math. Phys. 313 (2012) 351-373 [arXiv:1104.5047]

14.   Electric-magnetic duality and topological order on the lattice, Oliver Buerschaper, Matthias Christandl, Liang Kong, Miguel Aguado, Nuclear Physics B. 876 [FS] (2013) 619-636 [arXiv:1006.5823]

15.   Some universal properties of Levin-Wen models, Liang Kong, XVIITH International Congress of Mathematical Physics, World Scientific 444-455 (2014) [arXiv:1211.4644]

16.   Cardy algebras and sewing constraints, II, Liang Kong, Qin Li, Ingo Runkel, Adv. Math. 262 (2014) 604-681 [arXiv:1310.1875]

17.   Anyon condensation and tensor categories, Liang Kong, Nucl. Phys. B 886 (2014)436-482 [arXiv:1307.8244]

18.   The functoriality of the centre of an algebra, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Math. 285 (2015) 811-876 [arXiv:1307.5956]

19.  Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Comm. Math. Phys. 351 (2017) 709-739 [arXiv:1602.05936]

20.   A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 94, 155113 (2016) [arXiv:1602.05936]

21.   Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 95, 235140 (2017) [arXiv:1602.05936]

22.    Boundary-bulk relation in topological orders, Liang Kong, Xiao-Gang Wen, Hao Zheng, Nucl. Phys. B 922 (2017), 62-76 [arXiv:1702.00673]

23.    Drinfeld center of enriched monoidal categories, Liang Kong, Hao Zheng, Adv. Math. 323 (2018) 411-426 [arXiv:1704.01447]

24.    Gapless edges of 2d topological orders and enriched monoidal categories, Liang Kong, Hao Zheng, Nucl. Phys. B 927 (2018) 140-165 [arXiv:1705.01087]

25.    Topological orders and factorization homology, Yinghua Ai, Liang Kong, Hao Zheng, Adv. Theor. Math. Phys. Vol. 21, Number 8, (2017) 1845-1894 [arXiv:1607.08422]

26.    A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. X 8, 021074, (2018) [arXiv:1704.04221]

27.    The center functor is fully faithful, Liang Kong, Hao Zheng, accepted by Adv. Math. [arXiv:1507.00503]


百家乐开闲的几率多大| 澳门百家乐官网娱乐城注册| 百家乐官网官网站| 百家乐官网长t恤| 百家乐官网网址| 赌场百家乐官网投注公式| 百家乐电子作弊器| 大发888 客服| 百家乐官网视频双扣| 百家乐官网怎么对冲打| 百家乐的桌子| 新葡京官网| 皇冠百家乐官网在线游戏| 威尼斯人娱乐城轮盘| 百家乐官网视频游戏平台| 百家乐路单用处| 百家乐技巧何为百家乐之路| 百家乐官网群东方鸿运| 赌场百家乐试玩| 百家乐官网一般多大码| 大赢家娱乐城怎么样| 百家乐官网赌博技巧大全| 网上百家乐有人赢过嘛 | 伯爵百家乐娱乐网| 沙龙百家乐官网娱乐场开户注册| 甘孜| 百家乐网站排名| 百家乐官网学院教学视频| 大发888开户即送58| 澳门百家乐职业赌客| 百家乐官网技巧方法| 新世纪百家乐的玩法技巧和规则 | 百家乐制胜法宝| 百家乐官网赌博详解| 百家乐怎么玩| 网上百家乐试玩网址| 澳门玩百家乐赢1000万| 八卦图24山代表的| 百家乐官网怎么玩啊| 立博百家乐的玩法技巧和规则| 百家乐官网赌场策略大全|