AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Fang Kong
Assistant Professor
kongf@sustech.edu.cn

Research Interests

Online Learning, Reinforcement Learning, Machine Learning


Education

2020.9-2024.6 Shanghai Jiao Tong University, PhD in Computer Science

2016.9-2020.6 Shandong University, Bachelor’s Degree in Software Engineering


Research Experiences

2023.2-2023.8 The Chinese University of Hong Kong, Research Assistant

2022.7-2024.7 Tencent WXG, Research Intern

2021.12-2022.5 Microsoft Research Asia, Research Intern

2021.6-2021.8 Alibaba DAMO Academy, Research Intern


Publications

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.

肯博百家乐游戏| 金杯百家乐官网的玩法技巧和规则 | 百家乐官网人生信条漫谈| 申博百家乐有假吗| 博彩优惠| 百家乐官网游戏大小| 百家乐官网软件代理打| 网上百家乐赢钱公式| 百家乐龙虎台布作弊技巧| 利都百家乐国际娱乐场开户注册| 水果机游戏| 百家乐官网那个平台信誉高| A8百家乐游戏| 老虎百家乐的玩法技巧和规则| 大发888娱乐城备用| 鼎龙国际娱乐城| 24风水| 百家乐娱乐网佣金| 网上百家乐游戏| 大发888老l| 怎样玩百家乐官网赢钱| 华侨人百家乐官网的玩法技巧和规则| 百家乐官网赢谷输缩| 百家乐五铺的缆是什么意思| 田阳县| 百家乐官网玩法官网| 六合彩特码开奖结果| 百家乐官网骰盅规则| 西游记百家乐娱乐城| 怎么赌百家乐官网能赢| 太阳城百家乐赌场| 百家乐官网玩法及细则| 威尼斯人娱乐场官网48008| 澳门百家乐官网指数| 百家乐专业豪华版| 德州百家乐21点桌| 做生意门口禁忌| 百家乐官网赌博游戏| 威尼斯人娱乐网网上百家乐的玩法技巧和规则 | 大发888官方 hplsj| 百家乐全透明牌靴|