AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Fang Kong
Assistant Professor
kongf@sustech.edu.cn

Research Interests

Online Learning, Reinforcement Learning, Machine Learning


Education

2020.9-2024.6 Shanghai Jiao Tong University, PhD in Computer Science

2016.9-2020.6 Shandong University, Bachelor’s Degree in Software Engineering


Research Experiences

2023.2-2023.8 The Chinese University of Hong Kong, Research Assistant

2022.7-2024.7 Tencent WXG, Research Intern

2021.12-2022.5 Microsoft Research Asia, Research Intern

2021.6-2021.8 Alibaba DAMO Academy, Research Intern


Publications

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.

百家乐官网澳门百家乐官网澳门赌场| 沙龙百家乐官网娱乐场开户注册| 金赞娱乐成| 菲律宾百家乐官网的说法| 百家乐是怎么赌法| 优博家百家乐官网娱乐城| KK百家乐娱乐城| 百家乐官网机器出千| 大发888娱乐城可靠吗| 百家乐官网博弈指| 三晋棋牌中心| 百家乐桌布专业| 噢门百家乐官网注码技巧| 太阳城83| 博乐百家乐游戏| 武鸣县| 电玩百家乐游戏机路单| 来博| KTV百家乐的玩法技巧和规则| 如何玩百家乐官网赢钱技巧| 百家乐官网翻天在线观看| 百家乐官网免费路单| 大发888娱乐场东南网| 中华百家乐娱乐城| 互博百家乐官网的玩法技巧和规则| 大发888娱乐城 真钱| 试玩区百家乐1000| 青鹏棋牌官网| 鼎龙百家乐的玩法技巧和规则| 百家乐官网唯一能长期赢钱的方法| 百家乐官网技巧和规律| 澳门线上赌场| 历史百家乐官网路单图| 内黄县| 体球网足球比分| 百家乐方案| A8百家乐娱乐网| 噢门百家乐注码技巧| 真人百家乐园| 破解百家乐打路单| 正品百家乐官网玩法|